#!/usr/bin/env python # coding: Latin-1 # Load library functions we want import time import os import sys import pygame import PicoBorgRev # Re-direct our output to standard error, we need to ignore standard out to hide some nasty print statements from pygame sys.stdout = sys.stderr # Setup the PicoBorg Reverse PBR = PicoBorgRev.PicoBorgRev() #PBR.i2cAddress = 0x44 # Uncomment and change the value if you have changed the board address PBR.Init() if not PBR.foundChip: boards = PicoBorgRev.ScanForPicoBorgReverse() if len(boards) == 0: print 'No PicoBorg Reverse found, check you are attached :)' else: print 'No PicoBorg Reverse at address %02X, but we did find boards:' % (PBR.i2cAddress) for board in boards: print ' %02X (%d)' % (board, board) print 'If you need to change the I²C address change the setup line so it is correct, e.g.' print 'PBR.i2cAddress = 0x%02X' % (boards[0]) sys.exit() #PBR.SetEpoIgnore(True) # Uncomment to disable EPO latch, needed if you do not have a switch / jumper # Ensure the communications failsafe has been enabled! failsafe = False for i in range(5): PBR.SetCommsFailsafe(True) failsafe = PBR.GetCommsFailsafe() if failsafe: break if not failsafe: print 'Board %02X failed to report in failsafe mode!' % (PBR.i2cAddress) sys.exit() PBR.ResetEpo() # Settings for the joystick axisUpDown = 1 # Joystick axis to read for up / down position axisUpDownInverted = False # Set this to True if up and down appear to be swapped axisLeftRight = 2 # Joystick axis to read for left / right position axisLeftRightInverted = False # Set this to True if left and right appear to be swapped buttonResetEpo = 3 # Joystick button number to perform an EPO reset (Start) buttonSlow = 8 # Joystick button number for driving slowly whilst held (L2) slowFactor = 0.5 # Speed to slow to when the drive slowly button is held, e.g. 0.5 would be half speed buttonFastTurn = 9 # Joystick button number for turning fast (R2) interval = 0.00 # Time between updates in seconds, smaller responds faster but uses more processor time buttonShutdown = 0 # Joystick button number to get the Raspberry Pi to shutdown (Select) #buttonSiren = 12 # Joystick button number to get the Raspberry Pi to play siren.mp3 (Triangle) # Power settings voltageIn = 1.2 * 12 # Total battery voltage to the PicoBorg Reverse voltageOut = 12.0 # Maximum motor voltage # Setup the power limits if voltageOut > voltageIn: maxPower = 1.0 else: maxPower = voltageOut / float(voltageIn) # Setup pygame and wait for the joystick to become available PBR.MotorsOff() os.environ["SDL_VIDEODRIVER"] = "dummy" # Removes the need to have a GUI window pygame.init() print 'Waiting for joystick... (press CTRL+C to abort)' while True: try: try: pygame.joystick.init() # Attempt to setup the joystick if pygame.joystick.get_count() < 1: # No joystick attached, toggle the LED PBR.SetLed(not PBR.GetLed()) pygame.joystick.quit() time.sleep(0.5) else: # We have a joystick, attempt to initialise it! joystick = pygame.joystick.Joystick(0) break except pygame.error: # Failed to connect to the joystick, toggle the LED PBR.SetLed(not PBR.GetLed()) pygame.joystick.quit() time.sleep(0.5) except KeyboardInterrupt: # CTRL+C exit, give up print '\nUser aborted' PBR.SetLed(True) sys.exit() print 'Joystick found' joystick.init() PBR.SetLed(False) try: print 'Press CTRL+C to quit' driveLeft = 0.0 driveRight = 0.0 running = True hadEvent = False upDown = 0.0 leftRight = 0.0 # Loop indefinitely while running: # Get the latest events from the system hadEvent = False events = pygame.event.get() # Handle each event individually for event in events: if event.type == pygame.QUIT: # User exit running = False elif event.type == pygame.JOYBUTTONDOWN: # A button on the joystick just got pushed down hadEvent = True elif event.type == pygame.JOYAXISMOTION: # A joystick has been moved hadEvent = True if hadEvent: # Read axis positions (-1 to +1) if axisUpDownInverted: upDown = -joystick.get_axis(axisUpDown) else: upDown = joystick.get_axis(axisUpDown) if axisLeftRightInverted: leftRight = -joystick.get_axis(axisLeftRight) else: leftRight = joystick.get_axis(axisLeftRight) # Apply steering speeds if not joystick.get_button(buttonFastTurn): leftRight *= 0.5 # Determine the drive power levels driveLeft = -upDown driveRight = -upDown if leftRight < -0.05: # Turning left driveLeft *= 1.0 + (2.0 * leftRight) elif leftRight > 0.05: # Turning right driveRight *= 1.0 - (2.0 * leftRight) # Check for button presses if joystick.get_button(buttonResetEpo): PBR.ResetEpo() if joystick.get_button(buttonSlow): driveLeft *= slowFactor driveRight *= slowFactor # if joystick.get_button(buttonSiren): # omxplayer -o local ~/metalborg/siren.mp3 if joystick.get_button(buttonShutdown): # Start the Raspberry Pi shutdown sequence print 'Shutting down...' PBR.MotorsOff() PBR.SetCommsFailsafe(False) PBR.SetLed(True) os.system('sudo halt') break # Set the motors to the new speeds PBR.SetMotor1(driveRight * maxPower) PBR.SetMotor2(-driveLeft * maxPower) # Change the LED to reflect the status of the EPO latch PBR.SetLed(PBR.GetEpo()) # Wait for the interval period time.sleep(interval) # Disable all drives PBR.MotorsOff() except KeyboardInterrupt: # CTRL+C exit, disable all drives PBR.MotorsOff() print